If it's not what You are looking for type in the equation solver your own equation and let us solve it.
s^2+2.5s+0.5=0
a = 1; b = 2.5; c = +0.5;
Δ = b2-4ac
Δ = 2.52-4·1·0.5
Δ = 4.25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2.5)-\sqrt{4.25}}{2*1}=\frac{-2.5-\sqrt{4.25}}{2} $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2.5)+\sqrt{4.25}}{2*1}=\frac{-2.5+\sqrt{4.25}}{2} $
| 7x=10=-4-23 | | 2x-18=246 | | 2(2x^2-25x)+2(3x^2+60)=180 | | 3(-7)2x=7 | | 3(-7)-2y=7 | | 4x500=880 | | -9+a=1@ | | 42+3g=72 | | 9=15+8x | | 5+2xN=20 | | 39=13+2g | | 5x+5(x-3)=25 | | -2e-12=14 | | -8x-15=-4x+13 | | x+6(x-1)=2 | | (2x+5)+51+90=180 | | 4x+2/3=11/6 | | (2x-5)+62+x=180 | | 7x-8-2x=-3 | | 55+s=110s+ | | -9x+5x+15=23 | | 48/6=x/5 | | 4b-(-3)=11 | | 0=-16t^2+80t+10 | | 5z+5=3z+7 | | x+85+55=180 | | 9y-40=y=2 | | (2x)+15=51 | | 15+(2x)=51 | | 197=-v+60 | | 64x^+7=32 | | x+2×7=9×3 |